Meeuse, M.W.M., Hauser, Y.P., Nahar, S., Smith, A.A.T.S., Braun, K., Azzi, C., Rempfler, M., Großhans, H.* (2023) The Grainyhead/LSF transcription factor GRH-1 is rhythmically required for molting EMBO J. e111895


Quévillon Huberdeau, M., Nilesh Shah, V., Nahar, S., Neumeier, J., Houle, F., Bruckmann, A., Gypas, F., Nakanishi, K., Großhans, H., Meister, G., and Simard, M.J.* (2022) A specific Argonaute phosphorylation regulates the binding to microRNAs during C. elegans development. Cell Rep. 41: 111822

Stojanovski, K., Großhans, H.*, and Towbin, B.D.* (2022) Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans. Nat Commun 13:3132


Methot, S.P.#, Padeken, J.#, Brancati, G., Zeller, P., Delaney, C.E., Gaidatzis, D., Kohler, H., van Oudenaarden, A., Großhans, H., and Gasser, S.M.* (2021) H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol. 23:1163-1175 (# equal contribution)

Tsiairis, C.*, and Großhans, H.* (2021) Gene expression oscillations in C. elegans underlie a new developmental clock. Curr Top Dev Biol. 2021;144:19-43.

Gudipati, R.K.*,(2021) Braun, K.#, Gypas, F.#, Hess, D., Schreier, J.,Carl, S.H., Ketting, R.F., and Großhans, H.* Protease-mediated processing of Argonaute proteins controls small RNA association. Mol Cell 81:2388-2402.e8 (# equal contribution)


Meuse, M.W.M.#, Hauser, Y.P.#, Morales Moreno, L.J., Hendriks, G.-J., Eglinger, J., Bogaarts, G., Tsiairis, C., and Großhans, H.* (2020) Developmental function and state transitions of a gene expression oscillator in C. elegans. Mol Syst Biol. 16: e9498 (# equal contribution)

Azzi, C.#, Aeschimann, F.#, Neagu, A., Großhans, H.* (2020) A branched heterochronic pathway directs juvenile-to-adult transition through two LIN-29 isoforms. eLIFE. 9: e53387. (# equal contribution)


Welte, T.#,*, Tuck, A.C.#, Papasaikas, P., Carl, S.H., Flemr, M., Knuckles, P., Rankova, A., Bühler, M., and Großhans H.* (2019) The RNA hairpin binder TRIM71 modulates alternative splicing by repressing MBNL1. Genes Dev. 33: 1221-1235. (# equal contribution)

Aeschimann, F., Neagu, A., Rausch, M., and Großhans, H.* (2019). A single let-7 target to coordinate transition to adulthood. Life Science Alliance 2, e201900335.

Pereira, L., Aeschimann, F., Wang, C., Lawson, H., Serrano-Saiz, E., Portman, D.S., Großhans, H., and Hobert, O.* (2019) Timing mechanism of sexually dimorphic nervous system differentiation. eLIFE 8: e42078.
(Preview: Perry & Desplan (2019) eLIFE 8: e41523.)


Kumari, P.#, Aeschimann, F.#, Gaidatzis, D.#, Keusch, J.J.#, Ghosh, P., Neagu, A., Pachulska-Wieczorek, K., Bujnicki, J.M., Gut, H.*, Großhans, H., and Ciosk, R.* (2018) Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition. Nat. Commun. 9: 1549. (# equal contribution)

Brancati, G., and Großhans, H.* (2018). An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity. Nucleic Acids Res. 46: 3259–3269.
(NAR Breakthrough Article;
Recommended Article: F1000Prime: doi:10.3410/f.733028808.793544522 and doi:10.3410/f.733028808.793546212)

de la Mata, M.*, and Großhans, H.* (2018). Turning the table on miRNAs. Nature Struct. Mol. Biol. 25: 195–197.


Miki, T.S.#,*, Carl, S.H. #, and Großhans, H.* (2017). Two distinct transcription termination modes dictated by promoters. Genes Dev. 31: 1870-1879. (# equal contribution)
(Highlighted in: Otto, Nat. Rev. Genet. (2017) doi:10.1038/nrg.2017.93;
Recommended Article: F1000: doi:10.3410/f.731980027.793540272)

Malone, B., Atanassov, I., Aeschimann, F., Li, X., Großhans, H., and Dieterich, C.* (2017). Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids Res. 45: 2960-2972.

Aeschimann, F., Kumari, P., Bartake, F., Gaidatzis, D., Xu, L., Ciosk, R., and Großhans, H.* (2017). LIN41 post-transcriptionally silences mRNAs by two distinct and position-dependent mechanisms. Mol. Cell 65: 476–489.
(Highlighted in: Hand & Bazzini, Mol. Cell 65: 375-377;
Editor’s Choice: Sci. Signal 10: doi:
Recommended Article: F1000: doi:10.3410/f.727233850.793531470


Miki, T.S., Carl, S.H., Stadler, M.B., and Großhans, H.* (2016). XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans. PLoS Genet. 12: e1006313.

Richter, H., Katic, I., Gut, H., and Großhans, H.* (2016). Structural Basis and Function of XRN2-Binding by XTB Domains. Nat. Struct. Mol. Biol. 23: 164-71.


Aeschimann, F., Xiong, J., Arnold, A., Dieterich, C.*, and Großhans, H.* (2015). Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling. Methods 85: 75-89.

Ecsedi, M., Rausch, M., and Großhans, H.* (2015). The let-7 microRNA directs vulval development through a single target. Dev. Cell 32: 335-44.

Rüegger, S., Miki, T.S., Hess, D., and Großhans, H.* (2015) The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling. Nucleic Acids Res. 43: 3344-57.

de la Mata, M., Gaidatzis, D., Vitanescu, M., Stadler, M.B., Wentzel, C., Scheiffele, P., Filipowicz, W.,* and Großhans, H.* (2015). Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. 16: 500-11.

Rausch, M.#, Ecsedi, M.#, Bartake, H., and Großhans, H.* (2015). A genome-wide screen reveals widespread function of cell cycle genes in let-7 miRNA activity. Dev. Biol. 401: 276-86. (# equal contribution)


Miki, T.S.#, Rügger, S.#, Gaidatzis, D., Stadler, M., and Großhans, H.* (2014). Engineering of a conditional allele reveals multiple roles of XRN2 in C. elegans development and substrate specificity in microRNA turnover. Nucleic Acids Res. 42: 4056-67

Miki, T.S., Richter, H. #, Rüegger, S.#, and Großhans, H.* (2014). PAXT-1 promotes XRN2 activity by stabilizing it through a conserved domain. Mol. Cell 53: 351-560
(# equal contribution)

Hendriks, G.-J.#, Gaidatzis, D. #, Aeschimann, F., and Großhans, H.* (2014). Extensive oscillatory gene expression during C. elegans development. Mol. Cell 53: 380–392 (# equal contribution)
(Highlighted in Laxman, S. et al., Mol Cell 53:363-364;
Recommended Article: F1000: doi: 10.3410/f.718243173.793495536)


Katic, I.* and Großhans, H.* (2013). Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans. Genetics 195: 1173-1176

Bossé, G.D., Rüegger, S., Ow, M.C., Vasquez-Rifo, A., Rondeau, E.L., Ambros, V.R., Großhans, H., and Simard, M.J.* (2013). The DeCapping Scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol. Cell 50: 281-287

Ecsedi, M., and Großhans, H.* (2013). LIN-41/TRIM71: Emancipation of a miRNA target. Genes Dev. 27: 581-589

Miki, T.S.*, and Großhans, H.* (2013). The multifunctional RNase XRN2. Biochem. Soc. Trans. 41: 825-830


Rüegger, S., and Großhans, H.* (2012). MicroRNA Turnover: When, How, and Why. Trends Biochem. Sci. 37:436-246


Hurschler, B.A., Harris, D.T., and Großhans, H.* (2011). The type II poly(A)-binding protein PABP-2 genetically interacts with the let-7 miRNA and elicits heterochronic phenotypes in Caenorhabditis elegans. Nucleic Acids Res. 39: 5647-5657

Chatterjee, S., Fasler, M., Büssing, I., Großhans, H.* (2011). Target-mediated protection of endogenous microRNAs in C. elegans. Dev. Cell 20: 388-396 (highlighted in Nat. Rev. Genet. 2011)

Filipowicz, W.*, and Großhans, H.* (2011). The Liver-Specific MicroRNA miR-122: Biology and Therapeutic Potential. In Gasser, S., Li, E. (eds.) Epigenetics and Disease – Pharmaceutical Opportunities. Prog. Drug Res. 67: 221-238


Jovanovic, M., Reiter, L., Picotti, P., Lange, V., Bogan, E., Hurschler, B.A., Blenkiron, C.; Lehrbach, N.J., Ding, X.C., Weiss, M., Schrimpf, S.P., Miska, E.A., Großhans, H., Aebersold, R., Hengartner, M.O.* (2010). A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat. Methods 7: 837–842

Büssing, I., Yang, J.S., Lai, E.C., and Großhans, H.* (2010). The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila EMBO J. 29: 1830-1839

Großhans, H.*, and Büssing, I. (2010). MicroRNA biogenesis takes another single hit from microsatellite instability. Cancer Cell 18: 295-297 (Preview)

Großhans, H. (ed.) (2010). Regulation of microRNAs. Adv. Exp. Med. Biol. Vol. 700

Großhans, H.*, and Chatterjee, S. (2010). MicroRNases and the regulated degradation of mature animal miRNAs. Adv. Exp. Med. Biol. 700: 140-155

Großhans, H.*, and Müllner, A.E. (2010). MicroRNAs in C. elegans development. Mol. Med. Medicinal Chem. 1: 54-94

Hurschler, B.A., Ding, X.C., and Großhans, H.* (2010). Translational Control of Endogenous MicroRNA Target Genes in C. elegans. Rhoads, R.E. (ed.): miRNA Regulation of the Translational Machinery. Prog. Mol. Subcell. Biol. 50: 21-40.


Chatterjee, S., and Großhans, H.* (2009). Active turnover modulates mature microRNA activity in C. elegans. Nature 461: 546-549
(Faculty of 1,000 “Must Read”)

Ding, X.C., and Großhans, H.* (2009). Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J. 28: 213-222

Ding, X.C., Weiler, J., and Großhans, H.* (2009). Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trend Biotechnol. 27:27-36


Ding, X.C., Slack, F.J.*, and Großhans, H.* (2008). The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 7: 3083-3090

Großhans, H.* and Filipowicz, W.* (2008). Proteomics joins the search for microRNA targets. Cell 134:560-562

Büssing, I., Slack, F.J., and Großhans, H.* (2008). let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14:400-409

Großhans, H.* and Filipowicz, W.* (2008). The expanding world of small RNAs. Nature 451:414-416


Großhans, H.* and Svoboda, P.* (2007). miRNAs, siRNAs, piRNAs – Kleine Wiener Ribonukleinsäuren. Bioessays 29:940-943

Großhans, H.* (2007). An in vivo perspective on microRNAs: Lessons from the worm In: MicroRNAs: Biology, Function and Expression. Clarke, N.J., and Sanseau, P.X. (eds.), pp. 127-155, DNA Press, Eagleville, PA


Großhans, H., Johnson, T., Reinert, K.L., Gerstein, M., and Slack, F.J.* (2005). The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8: 321-330

Johnson, S.M., Großhans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J.* (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635-647


Neumann, S., Petfalski, E., Brügger, B., Großhans, H., Wieland, F., Tollervey, D., and Hurt, E.* (2003). Formation and nuclear export of tRNA, rRNA and mRNA is regulated by the ubiquitin ligase Rsp5p. EMBO Rep. 4: 1156-1162


Großhans, H., and Slack, F.J.* (2002). Micro-RNAs: small is plentiful J. Cell Biol. 156: 17-22

Simos, G., Großhans, H., and Hurt, E. (2002). Nuclear export of tRNA. Results Probl. Cell Differ. 35:115-131


Großhans, H., Lecointe, F., Grosjean, H., Hurt, E., and Simos, G.* (2001). Pus1p-dependent tRNA pseudouridinylation becomes essential when tRNA biogenesis is compromised in yeast. J. Biol. Chem. 276: 46333-46339

Galani, K., Großhans, H., Deinert, K., Hurt, E., and Simos, G.* (2001). The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20: 6889-6898

Großhans, H., Deinert, K., Hurt, E. and Simos, G.* (2001). Biogenesis of the signal recognition particle involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export. J. Cell Biol. 153: 745-762


Großhans, H., Hurt, E., and Simos, G. * (2000). An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 14: 830-884

Großhans, H., Simos, G., and Hurt, E.* (2000). Review: Transport of tRNA out of the nucleus – direct channeling to the ribosome? J. Struct. Biol. 129: 288-294

Großhans, H.* (2000). Gene therapy – when a simple concept meets a complex reality. Funct. Integr. Genomics 1: 142-145

*: Corresponding author